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= wm In paper I, the construction of the graph of interactions, called (o-¥Bs), was deduced from the ‘self-

association hypothesis’. In paper I, a criterion of evolution during development for the (o-FBs), which
represents the topology of the biological system, was deduced from an optimum principle leading to
specific dynamics. Experimental verification of the proposed extremum hypothesis is possible because
precise knowledge of the dynamics is not necessary; only knowledge of the monotonic variation of the
number of sinks is required for given initial conditions. Essentially, the properties of the (0-FBs) are based
on the concept of non-symmetry of functional interactions, as shown by the ‘orgatropy’ function (paper
I1). In this paper, a field theory is proposed to describe the (p-FBs), i.e. the physiological processes
expressed by functional interactions: (i) physiological processes are conceived as the transport of a field

PHILOSOPHICAL
TRANSACTIONS
(@)

Phil. Trans. R. Soc. Lond. B (1993) 339, 463-481 © 1993 The Royal Society
Printed in Great Britain 463

[Z8 (€
\k\gjg
The Royal Society is collaborating with JSTOR to digitize, preserve, and extend access to |[& )z

Philosophical Transactions: Biological Sciences. STOR IS
Www.jstor.org


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

464 G. A. Chauvet Field theory of a (D-FBS) system

variable submitted to the action of a field operator; (ii) because of hierarchy, this field theory is based on
the concept of non-locality, and includes a non-local and non-symmetric interaction operator; (iii) the
geometry of the structure contributes to the dynamics via the densities of structural units; and (iv)
because a physiological process evolves on a particular timescale, it is possible to classify the levels of
organization according to distinct timescales, and, therefore, to obtain a ‘decoupling’ of dynamics at
each level. Thus, a property of structurality for a biological system is proposed, which is based on the
finiteness of the velocity of the interaction, thus, with distinct values of timescales for the construction of
the hierarchy of the system. Three axioms are introduced to define the fields associated with the topology
of the system: (i) the existence of the fields; (ii) the decoupling of the dynamics; and (iii) the ability of
activation-inhibition. This formulation leads to a self-coherent definition of auto-organization: an ¥Bs is
self-organized if it goes from one stable state for the (D-FBs) to another under the influence of certain
modifications of its topology, i.e. a modification of the (o-Fss). It is shown that properties deduced with
this formalism give the relationship between topology and geometry in an ¥Bs, and particularly, the
geometrical re-distribution of units. In the framework of this field theory, a statistical distribution
function of the states of the field is introduced, which shows that the collective behavior of the population
of units is not a simple summation of the individual elements, and gives a solution to the problem of the
passage from one level to another. Two examples are given: a justification of the self-association
hypothesis in the case of field variables, and a method to determine the 2-level neural field equations.
Finally, the concepts of complexity and autonomy are discussed, and we show that the autonomy of a
biological system increases with the potential of organization. The proposed principle of functional order
from hierarchy, which describes the natural trend towards time decoupling of the physiological function,
leads, in that sense, towards a simplification of the dynamics.

NOTATIONS AND SYMBOLS

A,B  ‘propagators’, attenuation functions of N/ jth term in N' corresponding to non-associated
potentials along the membrane units ' and to other units that are associated

AJ(r") amount of product that leaves the element in order to create the higher levels ({ + 1),
of volume at 7 through area 4 ({+2),...

D(x,y,z) diffusion ‘constant’ P, environmental substance
D, r-space of units P.~' physiological a-products that are the fields
Dy(r§") subspace of units u) that are connected to Yi-tatlevel [ — 1

the given unit u{") at level / Q(¢) fraction of units that change their state
Dy(r,ry) space of synapses at s(r,rp) in the r-neurons Q;_.,. intra—extracellular factor transformation

connected with the ry-neurons

stn —e

synaptic—extracellular factor transformation

Dg(r9) combination of subspaces D,(r,r,) when r R field operator applying to the field vector
varies density p
D" and D° diffusion coefficients in the r-space and {T"} timescale at level /
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in the s-space

D, _1(rp, i=1, NO set of units at level [ — 1
which corresponds to the i-unit %) at level [

F(r)dr"  amount of product that leaves the
element of volume along the distance dr*) in
the space of units u®)

H field operator applying to the field vector ¢ for
functional interactions.

HY(r)dr non-local interaction operator included in
the operator H

HY (r)dr®  non-local quantity of product that
leaves the element of volume along the
distance d’(r)) in the physical space

H; '~ activator-inhibitor non-local interaction
operator for the y* and  ~ field equations

Ifield(r,t) intracellular field potential

K+ ~) rate constant of the reaction
Uy + Uy — Uy

Ky, rate constant of the reaction p' + p** — p?

Ny number of units in the K groups Ey, £ =1, K’

Ny number of sources for the product P,

N' total number of units u/(s;ry) in space D,(r;r) at
level [ located in 7y

Phil. Trans. R. Soc. Lond. B (1993)

SN, W)

Uls,t,s',t'; @,00) potential kernel function

V' volume in the physical or cartesian space

VE=D(rOsy) potential function or kernel function

Vr,t(r) ot (); T'(Wy)] potential interaction
between the current point r, = 7y and any
other point 7; in the network at time ¢

V¥ (r,t) average of the distribution of postsynaptic
potentials

Vg extracellular field potential

V#  extracellular field potential due to firing

V#"(r,t) extracellular field potential due to

synapses activity

domain in the real physical space

corresponding to D,_,(r{,)), i =1, N©

X(r, Tp), instantaneous local somatic activity

d’(“(r(’)) distance extent at a lower level of
organization at r)

distribution function of the states
variables from the O-level to the [l-level

7,76 space coordinates

(r,t), (r0,p) space—time coordinates

@ units in the ) space

=5 1O =y,

X(r®)

[+1) — — -
D =g D =, Y =
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simplified notations for coordinates in spaces
of units

r=r® g=r® g,=1® simplified notations for
the location of neurons and groups of
neurons

u; structural unit

4 modified structural unit

u®  space of units at level [ (where the coordinates
of the unit in this space are 7))

v, velocity of the interaction

%, location of a structural unit at 7 in physical
space

o source term for the density field equation

p global non-local synaptic efficacy

uw?(u,t?) efficacy of neurons at level 2

¢ (p',p?) relation between densities deduced from
the local condition of constant organization

= density-connectivity function

a(r¢+ D O+ YY) density of units in 7@, in a
group localized at 7§'*? and connected to
other groups localized at v

w(s,r;7) density-connectivity of synapses defined in
a space Dy(r,ry) at s(r,7) in the rg-neurons
connected with the r-neurons

V.., parameter which depends on the environment

Vi =Y(n), b =Hn)

Y2 stable steady-state solution of the field equation

at level 2

space—time functional interaction value =

field variable

internal field variables at levels £ # [

internal field variable for the £-level,

external variable for other levels [ # £

(W*, ™) 2-component activator-inhibitor field
vector

Y (r, Tp) local soma membrane potential field
variable at the neuronal level with a
timescale {T}

V3(q,t%) activity of the groups u® of neurons

p*(g) density of the groups u® of neurons

p(r) distribution of units at point 7y in the r-space

of units

variation in time of the densities of units

and w, = (n,)

!

Y ()

Wi(re)
ye(re)

P, P

pY(r®)  density in an element of space dr®

p(r) density of neurons at r defined in the space
Dy(79)

p(r) density of groups

E(s,t; (X)) presynaptic efficacy

n(s,t; {X>) postsynaptic efficacy

Af!, variation in time of the distribution function

Af; state transition of the distribution function
after a transformation

Dy(s,T) postsynaptic local membrane potential
field variable at the synaptic level with the
timescale {7}

I'(r,ty) source term in the field equation

I'y(r,Ty) source term of the field at the neurons

level

source term of the field at the synapses

level

/.Km non-local operator

IT;'*'  potential of organization for the a-product,
for the two levels and for the whole system

Tu(s,t)

Phil. Trans. R. Soc. Lond. B (1993)
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1. INTRODUCTION: GEOMETRY AND
TOPOLOGY IN BIOLOGY SYSTEMS

In the two first papers, a theory of functional
organization of formal biological systems (¥Bs) was
proposed on the basis of a self-association hypothesis
(Chauvet 1993¢; referred to hereafter as paper I). The
combination of functional interactions due to this
hypothesis leads to the topology of the biological
system as a hierarchical system represented by an
oriented graph and called the (o-¥Bs). An optimum
principle for the time evolution of the (o-FBs) was
deduced from a state function called the potential of
organization (Chauvet 1993d; referred to hereafter as
paper II). In this paper, the dynamical processes
associated with the functional interactions are shown
to satisfy a non-local field equation. The fundamental
reason for this specific representation is the functional
hierarchy of the physiological processes. These pro-
cesses occur in spaces called ‘spaces of units’ that are
distinct from the physical space where structural units
are located.

Functional interactions considered in this theory
constitute the basis of biological systems. They have a
very different meaning from physical interactions. A
physical structure results from the combination of
physical interactions, i.e. the gravitational, electro-
magnetic and nuclear forces acting between particles
at different levels of description. A force acting on a
particle implies the quantum or classical movement of
the particle. The equilibrium state of a many-particle
isolated system corresponds to an optimum principle
in thermodynamics implying a null variation of
entropy for reversible processes, and a positive varia-
tion for non-reversible processes such as those found in
biology. It is clear that the structure of a system, such
as an assembly of particles, is governed by the second
law of thermodynamics which specifies the arrow of
time. From a mechanical viewpoint, the movement of
conservative systems satisfies the Hamilton principle,
which is also an optimum principle.

Although a biological system is made up of physical
structures, molecules and assemblies of molecules,
another kind of interaction characteristic of physiolo-
gical systems is considered here, i.e. the action of one
structural unit on another. A structural unit, the
‘source’, which may be a gene, a cell, a group of cells,
or an organ, or any group of such structures, emits a
‘product’ which may be a molecule, a potential, or
some parameter, that operates on another structural
unit, the ‘sink’. Physical interactions maintain a set of
particles in a given state of energy. Functional interac-
tions bring a product from one unit to another, induce
a transformation leading to the emission of another
product, which then acts upon another unit, and so on.
Thus, functional interactions correspond to various
products emitted by the sources and act at a distance,
creating non-local effects in the sinks. Of course, the
local interaction between the product and the recep-
tive structural unit has a molecular physical charac-
ter. The functional interaction is defined by three
elements: the source #; at r and the sink % at 7, the
transport of the ‘a-product’ P, ; synthesized in 7, and
the induced transformation in the sink. The ‘-
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466 G. A. Chauvet Field theory of a (D-FBS) system
product’ is denoted as ¥, between r and 7, (paper I).
P, ; is the product synthesized in 7, corresponding to
P, ;. P,;is the transformed value of P,; in r,. With
these definitions, P, ; or P ; are identified as elemen-
tary physiological functions. Thus, the elementary
physiological function is described as a mathematical
function, from r to 7,:

P, (ro) = Y§(Pui 1), (1
or with the transformed value:
P&,j(’o) = (DZ (Pyir) = ¢}1 ) 0'//2_‘1;‘ (Py,57), (2)

where ¢¥ represents the transformation induced in 7.
In a certain sense, the functional organization des-
cribed in terms of these interactions is superposed on
the structural physical organization, and leads to a
mathematical definition of what could really be a
physiological function. If F' represents the product,
i.e. the collective behaviour at the l-level, [ = 1,2, . . .,
L, then the physiological function F is the collective
behavior of the L levels of organization that constitute
the hierarchical system:

F=f(F', F% ... F%. (3)

In paper I, the construction of the graph of
interactions, called (o-FBs), was deduced from the
‘self-association hypothesis’ stating that in a system in
which all the units have the same potentialities, any
unit that does not synthesize the product it needs,
either dies, or for its survival, must receive this
function from another structural unit that possesses
the function. Evidence for this hypothesis is the
increase of the domain of stability after self-associa-
tion. This property was proved in paper I for a
metabolic auto-replicative system with two levels of
organization. In the present paper, an extension will
be proposed for diffusive metabolic auto-replicative
systems.

In paper II, a criterion of evolution for the (0-¥Bs),
which represents the topology of the biological system,
was proposed and deduced from an optimum prin-
ciple leading to specific dynamics. The precise know-
ledge of the dynamics is not necessary, but only the
sense of variation of the number of sinks: the number
of sinks either decreases or increases monotonically
according to initial conditions. Essentially, the proper-
ties of the (o-FBs) are based on the property of non-
symmetry of functional interactions, as shown by the
‘orgatropy’ function.

The present paper gives the properties of the
(p-FBs), the dynamical system for state variables /2.
A field theory for a hierarchical system is proposed to
describe the (p-FBs), which is based on the concept of
non-locality. Properties deduced with this formalism
give the relationship between topology and geometry
in an ¥Bs. The general structure of the field equation is
discussed, ahd a discrete derivation is proposed. Two
examples are considered: a space-time model of
metabolic and self-replicative structural units, which
is an extension of the model proposed in paper I in
support of the self-association hypothesis, and the
determination of the neural field equations in a system
with two levels of organization. A solution to the

Phil. Trans. R. Soc. Lond. B (1993)

problem of the determination of the relation between
population and elements is presented in terms of field
variables.

2. THE NATURE OF A POSSIBLE FIELD
THEORY IN BIOLOGY

(a) Geometry and finiteness of the velocity of
interaction

The physiological processes expressed by functional
interactions related to the geometry of the structure
can be conceived as the transport of a field variable
submitted to the action of a field operator. Let ¥/(r,)
be the field variable defined in the r-space, and let H
be the field operator which depends on ¥ and on
successive derivatives /™ with respect to time and
space coordinates. The field equation, as an extension
of equations (1-3), can be written in a general form as
follows:

Hy " =12,.. W(rt) = I(r1), (4)

where I' is the source term. In this equation, H
describes the propagation of the field variable  from r
to 7, the local transformation in 7, is represented by
I'(ro,4) (figure 1). Because the operator acts from one
point of space to another, it must take into account
the distance between these two points, and therefore
must include an interaction operator. More generally,
the influence of the location of points, i.e. the role of
geometry, on the dynamical processes, can be studied
with a field theory. The dynamical processes that
express the behaviour of the related functional inter-
actions continuously occur in space and time with a
finite velocity. Therefore, what is observed at point
(70,tp) results from what was emitted at point (7,f)
where #, = t + (||r — 7||) /vy and vy is the velocity of the
interaction.

The first property giving specific consequences to
biological systems is the finitude of velocity of func-
tional interactions. We can see why the finite value of
the velocity v, of the transport of the interaction,
which is the transport of molecules, potentials, cur-

@ VT

sources

interaction

Wr',T")

Figure 1. Sources and field variables. A field operator H acts
on the field variable and carries it from point 7 in the space
of units to point 7. Sources are denoted I'.
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r Space of units Tp r

Figure 2. Non-locality: a functional interaction exists from
volume (V') to volume (V) in the physical cartesian space,
represented here by axis (x). However, because of the
functional hierarchy of the system, it is formulated in terms
of fields in the space of structural units from 7 to 7
represented by axis (7).

rents, or parameter effects depending on the elemen-
tary physiological function, has an important conse-
quence on the behavior of the biological system, e.g.
the delay in the response between units at different
times of their production. These effects are included
directly in the field interaction operator. Fields are
therefore useful for the description of the propagation
of field variables between distant units. However, it is
difficult to determine the specific operator that des-
cribes the physiological phenomena.

(b) Non-locality derives from hierarchical
organization

The second and the more important property of the
hierarchical biological system is ‘non-locality’ (Chauvet
19934). This concept was introduced for a description
of the physiological mechanisms in a hierarchical
system. Figure 2 gives an intuitive description of non-
locality. Because of the functional hierarchy, the
abstract ‘structural unit’” element occupies a certain
volume V in the physical or cartesian space. The
action of this unit on another with volume V, is an
interaction between volumes and not between points
in the sense of the field theory. Thus, we have:

Property VI: existence of non-locality
The following invariance of the functional interac-
tion ¥ in a hierarchical system,

YV ANy <= Yir 7 N,

expressed in the physical space R? and in the space of
units D,, where the symbol ~ N denotes a volume-to-
volume application in the physical space, implies non-
locality.

In the physical space, the location of a structural

unit at r is denoted as x, (figure 2) and the location of
units at the lower level will be x,. Because the

Phil. Trans. R. Soc. Lond. B (1993)
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structural unit is not reducible to a point from where
the interaction originates, it is difficult to locate x, and
x,. This fundamental incertitude raises conceptual and
technical difficulties in the use of a field theory in
biology. We have chosen to represent the biological
structure in ‘spaces of units’, i.e. r-space and s-space
with the above notations, which are the abstract
spaces where the functional process occurs. For exam-
ple, let us recall the field description of nervous
processes. Since the space of synapses is structurally
included in the space of neurons, and since two
timescales are functionally attached to these spaces, a
hierarchical functional system is defined from the two
field variables: soma membrane potential and synap-
tic efficacy. The field variable ‘soma membrane
potential’ evolves from r to r 4+ dr in the continuous
r-space, i.e. between two infinitesimally close neurons,
considered to be points. But, the structural unit
‘neuron’ is not reducible to a point because other
different structural units (‘synapses’) exist on the
neuron.

The general presentation of this property has been
made elsewhere (Chauvet 1993a). Without restricting
generality, two successive levels of organization can be
considered. The first level / — 1 consists of sinks that
receive the product emitted by sources at the second
level I. In a system with N + I levels of organization,
subscript [ ranges from [=0 to [= N, where 0
represents the ‘fundamental level’, e.g. the molecular
level. Units belong to a space, denoted as u)-space at
level I, where the coordinates of the unit in this space
are 7)) and the density in an element of space dr(*) is
p(r"). This continuous density function can be
deduced from Dirac functions at each point of the
cartesian space. There exists a specific subspace of
units z) that are connected to the given unit «{'’. This
subspace at level / is denoted D,(r{")). We consider now
the units at lower level / — 1 that are in the unit "
and are connected with another ¢-unit at level /. Such
a set of units at level [ — 1, which corresponds to the
i-unit «f at level [ is denoted D,_(r,ri{")), i = 1, N©
(figure 3). The related domain in the real physical
space is X(r")). Therefore, if N*) i-units are connected

U]

) @
@-1) * Dl—l(r(il’ro))

Figure 3. Notations used in the text. The subspace of units
4" that are connected to the given unit «{" at level [ is
denoted D,(r{"). The units at lower level / — 1 that are in the
unit #§") and are connected with another i-unit at level /
constitute the set D,_,({)7{""), i=1, NO.
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468 G. A. Chauvet Field theory of a (D-FBS) system
to uf'), the functional relationship between the two
considered levels [ and [ — 1 is:

/V(/)

Dy(rg") = \J Dioa(rir"). (6)

i=1

Such a relation gives an expression of non-locality
because a unit at 7 extends over a distance d""'(r()
at a lower level of organization, the physiological
mechanisms at ) depend on mechanisms that evolve
“in’ that point, i.e. along the line d’(()). This new
function represents the size of units at ), and is
defined as follows:

VreD, - d'(r) e X(r) = R®, (7)

where superscript (/) has been suppressed for clarity.
When there is no ambiguity, superscript (/) is sup-
pressed in 7, 7o, etc. Because the functional interaction
Y occurs in r at the level of one structural unit, i.e. is
emitted at x, — d” and propagated from this point to ¥,
with the velocity v, a non-local interaction operator
HY(r)dr has to be included in the operator H (equa-
tion 4).

(¢) Consequences: timescale and spacescale

The principle of construction of the hierarchical
functional organization is based on the existence of
functional interactions between structural units. The
collective behavior of a subset of these structural units
constitutes the physiological function and defines a
level of organization. Because a physiological function
evolves on a particular timescale, i.e. its dynamics are
such that we see real variations in a certain interval
that can be considered as a unit of time, it is possible
to identify the level of organization by the timescale of
the process. An important consequence of the princi-
ple of construction is the ability of classifying the levels
of organization according to the timescales of the
physiological functions. Therefore, in this represen-
tation, the differences in timescales of the dynamics at
different levels of organization lead to a ‘decoupling’
of dynamics at each level. This ability of decoupling
allows the study of the dynamics of large systems to be
based on those of its subsystems. The transformation
of the large nonlinear dynamical system by decoup-
ling is similar to the linear decomposition of a matrix
into submatrices, where the non-diagonal elements
correspond to the coupling between subsystems, each
subsystem having its own timescale. For example,
specific properties of the cerebellar cortex regarding
learning and memory of space-time trajectories are
due to the hierarchical organization (Chapeau-Blon-
deau & Chauvet 1991). An interesting property
characterizes the fundamental distinction between
functional organization and structural organization:
there is no direct relation between the rank of the level
in the functional hierarchical system, the rank of the
level in the hierarchical structural system, and the
timescale at each functional level.

For example, in nervous tissue there are two
timescales for the state variables: synaptic efficacy and
activity. Synaptic efficacy changes on a long timescale
(several seconds to hours), and is the collective

Phil. Trans. R. Soc. Lond. B (1993)

behaviour of ‘synapsons’, complex structure including
not only synapses but also extrasynaptic and cytoplas-
mic structures (paper II), i.e. the solution in a one
neuron s-space—t-time of the dynamical system that
describes their elementary mechanisms. Similarly,
activity occurs on a short timescale (ms), and is the
collective behaviour of neurons, i.e. the solution in a
one network r-space-T-time of the dynamical system
that describes their elementary mechanisms. It is clear
that timescale for synapses is larger than timescale for
neurons, although synapses are included in neurons.
Due to the finite value of the interaction velocity,
the spacescale is different for each level of organiza-
tion, and gives another feature of this type of hierar-
chical system. In the case of the nervous system,
because potential is propagated with a finite velocity,
synaptic efficacy and activity have different velocities.
Thus, the two corresponding ‘physiological functional
spaces’ have different spacescales that lead to non-
locality as shown above. Therefore the finiteness of the
velocity of functional interactions with a different
value at each level determines the non-locality,
because the expression (7) imposes the delay d'(r)/v,
for the transport of functional interaction . This fact
leads to dynamics with different characteristics at
each level. All the specific concepts introduced above,
including the property of non-symmetry of functional
interactions, can be summarized as follows:

Property VII: structurality of a biological system

A biological system is characterized by the finiteness
of the velocity of interactions and therefore by the
dynamics that occur on a specific timescale, and
which constitute the collective behaviour of sources
and sinks. The distinct values of timescales allow the
construction of the hierarchy of the system. In such a
hierarchical system, the interaction operator is non-
local and non-symmetric. There is no relation between
the ranks of levels of organization and timescales.

(d) Relation between the geometry and the
topology of an FBS

Property VII gives the relation between the topo-
logy of the biological system (o-FBs), described as a
hierarchical set of non-symmetric functional inter-
actions, and the dynamics of the associated processes
(p-FBs) that occur on a specific timescale. The two
basic concepts of functional organization, non-sym-
metry and non-locality, are implicitly included in the
formulation: In paper II, a criterion of change in I7,
the potential of organization, and a sufficient condi-
tion for the dynamics of the number of sinks was
obtained. The continuous representation considered
in the present approach implies that the number of
sinks is represented as a density per unit volume. In
the r-space of units, the distribution of units is p(ry) at
point 7 and the field variable Y is propagated from r
to 7p. Thus, the topology of the ¥Bs in the continuous
representation is described by the variation in time of
the density function p(r,t). In the present theory we do
not need the explicit formulation of the dynamics of
the density but only the sense of the monotonic
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variation. The knowledge of this function p(r,¢) and of
its variation in time satisfying the optimum principle
(paper II), associated with the dynamics of the
processes of functional interactions, gives the relation
between the two systems (o-rBs) and (p-¥Bs). The
geometry and the topology of the system are thus
included in the dynamics of the processes. This aspect
of the theory will be studied in more detail in § 4.
There are two consequences to this formulation: (i)
the monotonic variation of the densities of structural
units; and (ii) the existence of a non-local and non-
symmetric interaction operator in the dynamics.

HY =TT

3. A MULTIPLE FIELD THEORY OF
FUNCTIONAL ORGANIZATION

(a) Axiomatic presentation: definition of the fields

Three axioms may be introduced to define the fields
associated with the topology of the system. The field
equation at level /, and in timescale {7*}, can be
written, following (4).

Axiom I: existence of the fields
At each [level, an excitatory field y'(r,¢) describes
the time evolution of the system (p-FBs):

HY ™0 =12, W nt) = T'(ry), te{T'}). (8)

The solution of this field equation is called a
dynamical state in organization described by graph

(G).

In an N-level system, adjacent levels k=1, .. .1 — 1,
[+1,... N are coupled to the /-level by external
variables, or parameters, that are internal variables

l//f(f,t) at levels £ # (.

Axiom II: decoupling of the dynamics

For each [-level, a timescale {T'} characterizes the
dynamics of the functional process supported by the
structural units. This parameter allows the construc-
tion of the hierarchical system, and implies a temporal
decoupling of the levels according to their dynamics,
i.e. their collective behaviour.

This axiom provides a method for the construction of
the hierarchical system. Let y%(r,#) be the variable for
the k-level, which constitutes an external variable for
the other levels [ # k. This variable can be: either (i) a
steady-state solution of the field equation at the k-level
for a timescale {T*}:

H YA ()] ¥ (nt) = TH(nt),

Y is a steady-state, i.e. a solution of this equation
when dy/d/ = 0; or (ii) a parameter of this equation
when the process at level £ evolves slowly relatively to
the process at level /. This property can be expressed
by:

te{T", 9)
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th=g(¢'), dg/dt'=~0, tre{T*}, 'e{T". (10)

Finally, the field equations can be written:
lel(r:t) = Fl[rat; l//e(r:t/)]

dejdt~0  te{Ty  te{TH. (11)

Axiom III: activation-inhibition

In the most frequent cases, the excitation field is
activator-inhibitor at a given level. Then ¥' is a
2-component vector denoted (¥ *, )’ that verifies
the field equation:

. H* 0 Vs r+
with H=< 0 H*> ’:P=<'/I> Fz(l_,).

For example, abstract activating and inhibitory com-
ponents of activity can be defined in a nervous system
(Chauvet 1990).

(b) Field and functional organization

The existence of the two systems (0-FBs) and (D-FBs)
leads to a definition of the self-organization of an ¥Bs
that takes into account their relationship:

Definition VIII: self-organization

An FBs is self-organized if it goes from one stable
state for the (p-FBs) to another under the influence of
certain modifications of its topology, i.e. a modifica-
tion of the (0-FBs).

With a 2-level system, the field equations are:

HAP(r0%) = Ty(r,%Wm)  Pe{T3, (12.1)
HY (rgh) = Ty(r,th9%) t'e{T", (12.2)
(TY <{T%  dy2/di* ~0, (12.3)

where V,, is a parameter which depends on the
environment. Y2 is the stable steady-state solution of
(12.1), the field equation at level 2, which is the slow,
or external, variable, for the l-level, because of the
difference of timescales:

dy?/di* ~ 0 te{Th (13)

! is the internal variable for the first level. Thus it is
possible to say that the parameter /2, solution of
equation (12.1), drives the evolution of the subsystem
at level 1 (Haken 1978). The solution ({*,1/%) depends
intrinsically on ¥? and extrinsically on y,, whose
value is determined by the environment. After con-
straints upon the ¥Bs in the steady-state (Y y?),, the
subsystems of the ¥Bs evolve as follows:

st

1. For the (p-FBs): a fluctuation of the environment
OW oy, OF an internal fluctuation that modifies , leads
the (p-rBs) system from (J,4%), to (YLY2), + O(Y,
¥?) according to dynamics which could be given
either by the bifurcation theory (Iooss & Joseph
1980), or by the catastrophe theory (Thom 1972) for a
uniform field.

2. For the (o-FBs): a modification of the organization
changes the structure of the dynamical system, and
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Xr Xr+d X
—————— Et__f_‘—— ———";B*-A.:_.——-*--———————————>
. ‘f(xr)&f’
N\
AJ(r) Al(r+dr)
P
r I | r+dr

F(r)dr

AJ(r) + F(rdr + HY(x)dr = AJ(r+dr)

Figure 4. Explanation of the balance equation with the non-
local term HY(x,)dr which represents all the inputs ¥ from
the sub-levels, i.e. the transport of the field variable in the
physical space from x, to x, + d’. Other local inputs are: (i)
AJ(r) at r through cross-section 4, where J is the flow per
unit area; and (ii) F(r)dr along the distance dr.

then its steady-state: the topology of the attractors is
modified and the (D-FBS) system goes instantaneously
from one steady state to another, with the possible
corresponding instabilities.

Tri0
A, =

Dy(i8")

A YO (r O =y =
[ p00")

Dy(r8"") D,, 100,08

p“)(r(“)

PV (U= DY L= D[40 =1 (0 (O gy gyt~

(e) Structure of the field equation: non-local
operator

The determination of H is not easy because it
contains all orders of time and space derivatives, and
integral operators. When the geometry of space or
some symmetry considerations impose H({) as invar-
iant with regards to rotations and translations, then:

H=20/0t— DV* - H, (14)

where V?is a diffusion term and H, is the interacting
non-local operator.

The formulation of H; can be deduced from the
balance equation (figure 4):

AJ (DY + FrO)ydr®O + A Y (r O, THdr ) =

AJ(r® + dr®),

where J(r)) is the flow through the area 4 of an
element of volume dr) in the space of units «’, This
equation describes the conservation of matter asso-
ciated with the ‘transport’ of the product correspond-
ing to the functional interaction Y (+(x),7") in an
element of volume dr = dr) (Chauvet 19934). The
amount of product that leaves this element of volume
AJ(r" + dr"“) is equal to the one that enters into the
same volume dr), and is the sum of three contribu-
tions: (i) 4J(r")) at r through area 4; (ii) F(r)dr®

Phil. Trans. R. Soc. Lond. B (1993)

along the distance dr") in the space of units «/’; and
(iii) the non-local quantity HY(r)dr’ along the
distance d’(r”)) in the physical space. This non-local
term is denoted:

HY (r©)dr®

oy

=AY O D (x), THdr O, (19)

A general expression of the non-local interaction
operator can be derived as follows (figure 4). At level
[, the unit uf"), located at r{"), receives the product
from units «) located at ). All the physiological
transformations from one unit to another are supposed
to be represented by a specific mathematical function,
called a potential function V@ =D (" 40: ), or a
kernel function, which expresses the action at 7§} of
units located at rY); i.e. the action at time ¢ of
what was emitted at time ¢ = ¢ — (||r — r{O|Dp" =
t— (d'(r§")) v, where d'(r§") is known from the
geometry of the system. The two following features
can be observed: (i) the product emitted by ) acts
on units at the lower level, i.e. on #~ 1] the density of
which is p("l)( =1y in the u("l’ -space; (ii) all the
units #) at r®, with density p“), contribute in an
additive manner to the global action on the given unit

uf". The sum of these non-local effects are described
by the operator derived from (14) and (15):

p([, 1)(,(1— 1)) yi= 1)(,(1),,(1— 1)) dr=bq,",
D1 (")

Therefore, the field equation includes the term:

1)( (¢-1)

)] dr=Ddr0,  (16)

where ¢ =t — (|Ir — "N jp® =t — A (") Jo® results
from non-locality. The determination of the potential
function V depends on the specific case studied, e.g. the
propagation of nervous activity in the neural network,
or the synaptic activity in the neuron (Chauvet 19935).

A physical interpretation of the potential function
created in space by the sources is the following: a
‘product’ (that is the field variable) in the potential is
submitted to this potential. For example, the active
sites of a membrane, which are the sinks for a product
P,, create a virtual potential in space for the chemical
substance P, emitted by cells. All other substances able
to react with P, and placed in this potential will react
according to a specific law of the system, represented
by the operator V. Therefore, the role of V is to
transmit the field ¥ over a distance, e.g. from (r,¢) to

(703t0) .

(d) Structure of the field equation: second
differential operator

The second order differential operator exists in
various fields of mathematical physics (Courant &
Hilbert 1953, 1962) and mathematical biology (Mur-
ray 1977): the temperature diffusion equation in
thermodynamics related to brownian motion by Ein-
stein’s formula D = wRT where D is the diffusion
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coefficient, R the perfect gas constant, and 7 the
temperature; the Laplace equation V2 = 0 for elec-
trostatic fields; and more generally, the Poisson equa-
tion V%) = — p(x,y,2)/e, for the potential ¥ created
by the density of charges p(x,y,z) at a point (x,y,z). In
quantum mechanics, the time-dependent Schrodinger
equation has the same form, except for the presence of
the complex number ¢, which is imposed by the
boundary conditions:

o OY W,

ih %= am Vi + Vi,
where m is the mass, | the field variable, V the
potential and h a constant related to the Planck
constant. All these equations show several common
features:

(17)

1. They are local, i.e. they describe a process at a
point, which depends only on mechanisms localized at
this point in an infinitesimal part of the space. As a
consequence, the summation of many local and
partial processes gives the global, observed process in
all space. For example, the energy function (hamilto-
nian H) in a lattice, the structure of which is similar to
a biological membrane, satisfies the equation, at each
point [,I’ of the lattice, for momentum p, and displace-
ment

1 1
“om Zﬁfﬁl + ) 21: ; w' Gy puy,

where the potential G,_, describes the interaction
between the two points / and /’ of the lattice. This is a
non-local interaction operator. In the quantum field
theory, such an expression of the potential, introduced
in the Lagrangian, would lead to many complications.
2. They show a space symmetry, i.e. an isotropic
propagation, because the term V?2J implies the same
evolution ¥ with (x,y,z) positive or negative. In

(18)

contrast, the Naviers—Stokes equation is non-sym-
metric:
v dv 10p
~Vv? —+ - = 19
V St 'atoee (19)

where v is the velocity of a volume element of matter
with specific mass p and viscosity #, and where p is the
pressure that applies to this element. The two last
terms make this equation very different from the
others, and come from Newton’s local law which
implies a global non-symmetric movement of the
given volume, described by vdv/0x due to the local
force gradient. Here too, the second order differential
operator describes the diffusion, symmetric effect, in
the moving volume element. The property of sym-
metry appears also in the numerical form of V2 If x;
and x;,; are two consecutive points such that: x;,; =
%;+ Vx, then a second order development gives the
derivatives:

'/; = (¢i+1 - '//i—l)/QAx,
W= Wie1 + Yiq — 20)/(Ax)2

The second order derivative is obviously symmetrical
with respect to Ax.

(20)
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3. They are physically defined in an homogeneous
space the homogeneity of which can be broken with the
diffusion ‘constant’ D(x,y,z) or the potential V(x,y,z)
depends on a space-function.

(e) Derivation of the discrete case from excitation

JSields

When a large number of structural units is con-
sidered, e.g. in the nervous system, continuous spaces
of units with density p(r) can be used (with, to
simplify, r = r() at level /, in the following). We have
seen in paper II that this result is correct at the lower
levels of the functional organization, but, at higher
levels, the number of units decreases. However, the
formal field equation:

Hy =T, (21)

is always valid with H being a non-differential
operator that acts from (7,f) to (ry,4), and I'(r,t) the
source term at point 7. It is possible to transform a
continuous mathematical system into a discrete one,
i.e. a partial derivative equation into a differential
equation as follows.

Let us assume that structural units are distributed
at v points 7, which are at a distant such that
continuous approximation is not valid. The interac-
tion term can be written:

Hpy (r0,0) = Z Vitostostiotis T(Yi) 1 W (7ioti) (22)
where ¥, = Y(r), & = i(r,). If U, denotes the potential
at 7, 1.e. the interaction between the field at 7, and the
source at 7, we have:

Z Ui(rostos i)W (1st) -

Hp (ro,40) (23)

The process at current time ¢ can be only considered
to be located in structural units, such that the
interaction between the current point 7, = 7, and any

other point 7, in the network at time ¢, is described
with the potential V [r,i(r),n,t (r:); T'(¥s)]. Therefore:

HI‘P 71» ZUI: 7btt) Tk, z Ecl tlpk ))
kL
= F, l// 5
k; WD gy
where, in the last equation, the delay has been

suppressed, i.e. ¢ = ¢’. This expression can be included
in the general field equation to provide the classical
reaction-diffusion equation:

|0t = DV, + Z Fu(Wi) + Tu(y).

k#l

(25)

Finally, when the distance between units is large with
respect to the length of diffusion, the differential
equation is:

dyy/dt = Y Fy (Y) + T, (¥))

k#1

[=12,...,v. (26)
So, it is always possible to eliminate the geometry
from the system, so as to keep only its topology. Such
an example is given by the passage from biological
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neural networks to formal neural networks, when the
density is replaced by a Dirac distribution.

4. EVOLUTION OF A FUNCTIONAL
ORGANIZATION BY COUPLING OF
THE GEOMETRY AND THE TOPOLOGY
IN AN FBS

(a) Potential of functional organization and
geometry

Functional organization is measured by the function
IT (equation (3), paper II):

I =) [sinks] In [sources].

levels

(27)

In a continuous representation, sink and source
concentrations are given by their densities, respecti-
vely, po(r) and p(r) at a point r in the space of units, at
the level [ of organization. The total number of
structural units is v = [(p(r) + po(r))dr. Because n =
Jpo(r)dr sinks in a volume [dr must be associated in
some way with the (v — [po(r)dr) other units that are
sources, the potential of organization (see paper II) is:

n = [(po(r)dr,

for a level of organization [. This will be called the
intra-level potential.

Let us consider now the inter-level potential. Dis-
crete groups of units are distributed in the space of
units and connected by functional interactions. The
calculation can be made in discrete space and
extended to continuous space by tending to the limit.
Let there be N, units in the K’ groups E,, £’ = 1,K’,
and N, sources for the product P, (figure 5). The
topology of the FBs is defined by the graph that
specifies the connections between the N, sources in
the group £, and the N; — N, sinks in the group E,.
Then, it is possible to generalize equation (28) to the
case of inter-level links: the number of potential
functional organizations between level [ + 1 with N,
sources and level [ with N, — N, sinks in the group £,
depends, first on the number of units in the group, and
second, on the number of groups, i.e. the number of
units at level (/ 4+ 1). The mathematical expression is:

II'=nln(v — n),

X

2. (InNy) (N = Nay).

k=1

g (k) = (30)
This calculation gives the potential of organization
between levels [ and (/ + 1).

Now, in the continuous space, let p(r) be the density
of groups, and w(r‘*V, r®; 7+ 1) the density of units
in 7(Y, in a group localized at r{’*" and connected to
other groups localized at 7). Equation (30) gives:

I (r§'* V) = i;f In[p(r+ )]

D+ U 1y

and IT4'*' for the whole system is obtained with an
integration for 7{'*? in space Dg:

Uéh'l _ j‘ Ha(ro([+l)) drélJrl).

Dy

Phil. Trans. R. Soc. Lond. B (1993)

v = J(polr) + p(r))dr,

(O D+ Dydr Oy D),

sources

sinks O

Figure 5. Inter-level potential of organization between
groups of units. Every sink in the group Ej is connected with
a source in the groups Ey, By, for all £ # .

The potential of organization for the two levels [ and
{+ 1 is the sum of equations (28) and (31):

N
=Y mi+.

=0

(31.3)

Therefore, three space functions determine the
topology of the system in a continuous hierarchical
space: (i) v(r) is the total number of (/ + 1)-units at

(28)

rD; G) w(r ) 4D, 7+ D) s the density of [-units at
r®_in the group localized at r{'*?, i.e. a ({ + 1)-unit
at r{’*Y, and connected to other groups at r¢+b. 7«
will be called the density-connectivity function. (iii)
p(r) is the density of groups at 7, i.e. the density of
({ + 1)-units at r. It is clear that the potential of
organization of this 2-level-FBs integrates both topo-
logy and geometry: (i) when functions =,v,p depend
on time, the optimum principle shown in paper II
could give a response to the problem of the time-
evolution for an (o-FBs); (ii) a similar optimum
principle for a (p-FBs) i.e. a principle that implies the
‘movement’ of the biological system, could be investi-
gated. The consequences of an optimum time control
hypothesis on the evolution of an FBs will be presented
elsewhere. Specifically, a non-hamiltonian dynamics
deduced from this hypothesis could lead to an inter-
pretation of aging in biological systems (Chauvet
1990).

(b) Dynamics of functional organization by
coupling topology and geometry

In paper I, a simple evolutionary model was
presented as an illustration of a 2-level dynamical
functional organization. This Eigen-Goodwin system
was a paradigm for the study of the dynamics of
functional interactions in a 3-level biological system.

(31.1)

When continuous spaces are considered, such a para-
digm can still be used where Y and p are two space
and time field-functions. Before studying numerically
the specific case of the Eigen—-Goodwin model, it is
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useful to prove a general property of such hierarchical
systems, which could be observed in real biological
systems.

Let R be the field operator applying to the field
vector density p, as H is the operator that applies to
the field vector ¥ for functional interactions. Due to
the self-association hypothesis, a unit at level / — 1 1s
associated with a modified unit, denoted with a ‘*’
superscript, at the same level, to obtain units at the
higher level /, according to the schema:

W= =D Syl (32)

More generally, units at the (/ — 1)-level of organiza-
tion are connected, following this schema (32) from a
functional point of view, with units of the [-level of
organization according to the density-connectivity
function #'~%‘ The consequence is a =~ “-operator
dependence that can be formally written as:

H(h) ¥ = Ty ve{TY,

R0 p' = (o~ l,p'> Fe(Tr,  (39)
where {T} and {7} are the time scales in the space of
interactions and in the space of densities, and o is the
source term for the densities at level /. The first
equation describes the dependence of the field at level
[ on the field at level [, on the geometry at level [
and on the field at level / — 1 via the source term. The
second equation describes the dependence of the
concentration of units at level / on the concentration
of units at level / — | according to (32), and on the

=7

D2 Diy1 Di(r,70)

N2

field at level / — 1. This dependence is due to the fact
that the rate of association in (32) depends on the
interaction Y'~', the ‘product’, that is transported
along the distance in the cartesian space. With inter-
level links, the schema (32) of self-association repre-
sents units at a level [ connected with adjacent levels
[ —1 and [+ | according to densities-connectivities
#'~5" and #"'*! respectively. Therefore, equations
(33) can be generalized at level [ into:

Hl(lpl,‘ﬂl_l l,wl,l+ 1) lpl — Fl('//l"l/lfl)
Rl(llll_ l,l//l,|/11+ l,ﬂl—l,l’wl,l+ l)ﬂl,l+ 1 —

Two limit cases are obtained for / =0 and [ =
(N + 1)-level system is considered:

HO '/lo,po 7701 I/IO I‘IO '//O IOG{TO},
ROWO W a0 o = (™) 1 e(T,

H"(I/In,ﬂn_ l,n,pn) I/I" — Pn('/ln"/lnf 1) Jid E{T"},

Rn('//nfl,llln,ﬂ_n—l,n, pn) pn — an(ﬂn—l,n’pn) tn/ € {Tn/}.
(34.3)

te{Th,

Oll(’ﬂl_ l,l’ﬂl,l+ 1)

Nifan

(34.2)

The general formal system (34) allows us to derive
the property of re-distribution of units among the
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different levels of the FBs. One unit at ) is composed
of sources whose density is p(r/~b), connected with
sinks whose density is p(r§'~"). Density-connectivity
at Oy +Y) now is a function which
represents the variation in time of the number of units
u'(r) in r connected with units u'~*(s;75) in 7, because
they are solutions of equations (34): R p = a. For
clarity, the coordinates in spaces of units will be
denoted

O =57 =g Y =D = U0 =,
Let N’ be the total number of units «/(s;7y) in space
Dy(r;ry) at level [ located in ry where the timescale is
{T}. They are connected with units in a space D, at
higher level /+ 1. In the most general case, this
number is the sum of several terms that correspond to
non-associated units «' (they are hierarchical systems
whose highest level is /), and to other units that are
associated in order to create the higher levels ([ + 1),

(L +2), . The first term is:
N = j' 0'(s,t)) dsdr. (35)

Dy f: 70)

The second term corresponds to p'*1(7) units #’ in

volume dr, connected with 7*/*(s,7,t%;7,) units u'(s310)
at (s;7g):

N, = j' j‘ 7 s, thr) p (s, dsdr,
D;+1 Dyfryrg)

where D, ,; = D,. The following terms would have the
same form:

J‘ 7Tl‘l+1(s,7’,ll;f) /+1, l+2(r q, ll+1 q ) pl+2(q,tl+2) dsdrdq, (36)

where D, = D,. Finally, N' is obtained as the sum:
)= N(t) + Na (£ o) + N3 (1" %5g0) + ... (37).

Equations (34) and (37) show that a geometrical re-
distribution of units follows a variation in time of
density-connectivities when a global condition of
conservation as (37) is imposed on the system. The
potential of functional organization IT“'*? can be
written as in (31.3) for two levels of organization, but
the time dependence of density-connectivities provides
IT as a function of time. Thus, we have:

Fel{Ty  I=1,..

LN—1. (341)

Property VIII: geometrical re-distribution of units

A biological system whose dynamics is described at
each level by functional interactions and densities: (i)
has a time-dependent potential of organization JI(¢) in
the timescale of the last level; and (ii) changes its
topology at a given level because of the geometrical
re-distribution of units after the variation in time of
density-connectivities.

This property describes the relation between the two
systems (0-FBs) and (D-FBs).
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5. STATISTICAL APPROACH BASED ON THE
FIELD THEORY

Is the collective behavior of the population of units a
simple summation of the individual elements? Results
obtained in statistical physics have given a negative
answer since the work of Boltzmann (1877) and Gibbs
(1902). In this section, a solution to the problem is
given for the present description of the functional
organization. We show that the hierarchical construc-
tion of the functional system, with each level describ-
ing the collective behavior in a distinct time scale,
leads to a possible determination of the statistical
distribution of the states of the field.

At each level of the functional organization exists a
state variable, the field variable, decoupled in time.
Therefore, it is possible to introduce a distribution
function of the states variables f/(Y°y?, . . ., ¥ from
the O-level to the l-level. Such a function gives the
proportion of structural units that are in the state
determined by the field. It depends on specific
parameters of the system, which describe the influence of
the units on the population of these units. The statistical
distribution function can be obtained as the solution of
a certain equation that describes the balance of units
submitted to various influences, e.g. elementary
physiological mechanisms.

Two classes of mechanisms are assumed:

1. An external influence on the system, e.g. an
excitation from another system in the biological
system, or a stimulation, which changes the propor-
tion of units in a given state. Because each unit has an
equal probability of passing from one state to another,
this process is similar to the change of states in a
compartment: the corresponding variation in time
Af!, of the distribution function is in direct relation
with the number of units at the present time. Let Q()
be the coefficient that expresses the fraction of units
that change their state. Then:

A@:(%v A= QU 1At (39)

2. An internal transformation corresponding to the
elementary mechanisms described by the field vari-
able: a state transition AfY occurs as soon as there
exists a transformation in the biological system, par-
ticularly when a stimulation is applied to the system.
The formulation of this term depends on the mechan-
isms that make the field variables evolve, i.e. on the
field equations themselves:

a 1
Af.zz = (%)WAL

The effect of all the state transitions can be assumed as
additive, because each field equation represents a
process on a different timescale. Therefore:

(39)

Property IX: Statistical equation of field states

The action of the fields on the population of
structural units is described by a statistical distribu-
tion function of the states f/(y° % . . ., ") which is a
solution of the equation:

Phil. Trans. R. Soc. Lond. B (1993)

0fl , ! afl
E=WV+Z@ﬁM (40)

i=0
where @(¢) is a rate constant, positive for an ‘attrac-
tive’ population, negative for a ‘repulsive’ population.
Specific parameters are included in the terms

of'
Afti =2 At
Sy (at )Aw’

that describe the state transitions.

In the present case of a biological system, the
temporal hierarchy that corresponds to the construc-
tion of the physiological functions provides a means to
make the contributions non-dependent. For each
specific biological system, the time partial derivatives
(0f'/0¢t)ay include new parameters that describe the
population effects under the action of the fields.

6. TWO EXAMPLES: SELF-ASSOCIATION
HYPOTHESIS AND NEURAL FIELD
EQUATIONS

(a) Role of geometry on the self-association
hypothesis

In paper I, it was shown that an increase of the
domain of stability could be a natural cause of self-
association between structural units, and therefore, a
cause for the creation of functional interactions and
hierarchy. It is important to know whether this
property still exists when the role of geometry is taken
into account, i.e. when processes are described by field
equations. Because we have not yet identified the class
of dynamical systems that satisfy this property, the
basic processes studied in paper I, i.e. metabolism and
replication, are considered here (figure 6). At initial
time ¢ = {, a micromutation occurs in a structural

w r 0, Fe
—»P, —»P; P »
~ o

- P

(L)

X, Y,
—-» G —»R) » Ej

Figure 6. Self-association between two units. A pathological
unit, z*, has created a functional interaction with ». The
product P is assumed to act on P; at a distance, and
therefore is identified to the field variable ¥ with rate
constant &. The negative feed-back from product P; acts on
the first enzyme Ej in the biochemical pathway (see figure
8a, paper I). The similar interaction from the pathological
unit «* on u allows identification of the inhibitor field
variable ¥ ~. The set (z,u*) constitutes a new unit u, at the
higher level.


http://rstb.royalsocietypublishing.org/

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

B

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rstb.royalsocietypublishing.org

unit %, producing a modified structural unit u;.
According to the principle of vital coherence, the
maintenance of the physiological function, called
‘product’, needs an association of this unit with
another that has the missing product. In mathemati-
cal terms, this means a coupling between the dynami-
cal system that describes the metabolism in % and the
modified dynamical system for ;. In this problem,
two levels of organization are considered: metabolism
inside a unit, and replication of units. With the
present formalism, we can say that a unit u" satisfies
the principle of vital coherence if it is placed in the
field of excitation of #-units (Chauvet 1990).

Let us consider the metabolic level. Without space
influence, metabolic regulation is described by the
dynamical system (equations (19), paper I):

dP[dt = — 4Py + f1 4(Pas@,K,00) + f1,4(Pa;0,5,0),
dPy/dt = — agPy + o1 P,

dPy/dt = — (a3 + o) P5 + oy,

dPyjdt = — oyPy + agPs,

dP}/dt = — o P} + aPs, (41)

where o is a positive constant included in the transport
mechanism and described by a function @ as
explained in paper 1, and simply describes the
contribution of product Pzew; to the production of
Pieuf; the parameter & 1is the stoechiometry of
the allosteric reaction: f; 4(Pyu®,K,00) = /(1 + KP5).
According to figure 6, with space influence, P; is
identified to ¥ * because it activates the synthesis of P
at a distance, and P; can be identified to ¥ ~. We
assumed in this model that Py, P,,P; are substances that
act locally, i.e. inside a unit. In matrix form, the
dynamical system is written:
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50 —  coupled units

interaction effect
-———-independent units

—e

distance / (u-u*)

Figure 7. Solution of equations (43) giving the concentration
of P, versus distance between units: (i) when units are
coupled (solid line); and (ii) when units are independent
(dot—dashed line). The interaction effect is obtained as the
difference (dotted line). The concentration of product P; is
the largest when units are coupled, and decreases when
distance increases.

and thus obtain a measurement of the coupling
between units.

At the level of populations of units % and w, = (u,
u7), the variation in time of the densities p* and p? is
supposed to satisfy the dynamics proposed by Eigen
(1971) with a condition of constant overall organiza-
tion. However, the model has to be transformed as
follows to take into account the first level of organiza-
tion: (i) to simplify the formulation, it is assumed that
there does not exist for p' a potential created by the
distribution p2, in which # would be immersed.
Therefore:

dp*|0t = D, V?p* + I'i(p',p?).

(i1) As verified previously, the intensity of coupling
depends on space distance, because % must be in the
excitation field of ; to survive. Therefore, the densities
evolve in time following the variation in time of the

(44.1)

HY)¥ =T, (42) coupling that is deduced from the dynamics of the
where field (Y *¥~). A consequence of the dynamics of
N — (g + )Y " + ozl \
Y- —oT +op”t
Y= P, I'=| — 4P + f14(Ps®,K,00) + f14(Pi50,5¢,00)
Py — 0Py + o, Py
P, — Py + agh " (43)

The non-local operators H;*>~ that describe the
non-locality property VII are included in the field
equations for Y * and Y ~. The partial derivative
equations (42) describe metabolism in unit 4, where a
functional interaction has been created. The stability
of a simpler system where a non-local operator is
assumed to be absent, i.e. the space extension of a unit
is considered to be a point, has been studied recently
by Machbub et al. (1991) with numerical methods.
Such a system-is an extension of (41) with diffusion
terms. The numerical resolution is based on a varia-
tional method studied by Burger & Machbub (1991).
A threshold of concentration is chosen which deter-
mines when the unit dies. Given this threshold, it is
possible to verify the relation between the distance of
the units and the ability of self-association (figure 7),

Phil. Trans. R. Soc. Lond. B (1993)

processes is the existence of the dynamics of organiza-
tion. Specifically, -three mechanisms originate in the
time variation of p2% (i) free diffusion of up-units; (ii)
self-replication and local competition between species
which generate the source term I'y(p',p?); and (iii)
creation by coupling according to the reaction:

W o+ ou o, (45)
located in:

(nt) () (nh),

or:

(') (rt) (nt),
with a rate constant
p?-equation is:

K *y~). Therefore, the
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2

op
ot

where the interaction operator H? is:

—— =D, V?0® + Ty(p,p?) + HI[Y+ ¥~ ,p%p"] pi(rt),

(44.9)

HY 3y .phpt] = (!,)K(W,W ) Sl =71 Ip¥ (e (7' ,t) + p*(r")p*(r)] dr’,  (46)

with the condition of global organization when the
number of modified units is small relatively to the
other units:

[ [p*(r8) + 2p*(r,t)] dr = constant,
(D)

(47)

which is similar to the condition wu(f) + 2uy(t) =
constant imposed on the non-space model (paper I).
We have studied a simpler case (Machbub et al. 1992),
which is deduced from the non-space model:

0p*|ot = DV ?p' + ap* — (1/c)$(p",p?) p*,
0p*[0t = D,V 2p® + axp® — (1/e)$(p,p%) p* + Kyup'p™,
¢c=p'+ 20% (44.3)

with the relation ¢(p',p%) = (a; + 2K11p™)p" + 2ap?
deduced from the local condition of constant organi-
zation. Machbub ¢ al. (1992) have shown that
diffusion can stabilize the null equilibrium state of the
locally unstable kinetic model. The non-null equili-
brium state can be studied with the same method:
with diffusion, the domain of stability of this equilib-
rium state in phase space (Kjp,p™) is shown to be
increased. Therefore, the field equations for structural
units u, at the second level have a larger domain of
stability than the field equation at level 1. Self-
association is a natural trend of this particular biologi-
cal system. Equations (44) can be written in matrix
form:

Rp=u

that, with equation (42), are a particular case of
equations (34). The condition of a constant number of
units (37) is equivalent to (47) for the simple connec-
tivity 2u; — us.

(b) A field theory for the nervous system

The previous sections have shown at least four
fundamental properties for a functional interaction
which lead to a field theory (Chauvet 19935): (i) non-
instantaneity, i.e. its transport with a finite velocity;
(i) non-locality because of the possible distance
between sources and sinks considered at different levels
of organization; (ili) non-symmetry between sources
and sinks; and (iv) non-homogeneity of the medium.
Non-locality and non-symmetry are included in the
local dynamical equation of one neuron, by means of a
non-local and non-symmetric term which describes the
unidirectional action of this neuron at a distance. In
this section, a method to determine 2-level neural field
equations is offered (Chauvet 1988, 19934). First
attempts for a 1-level field theory have been proposed
by Beurle (1956) and Griffith (1963, 1965).

(i) A general definition of synaptic efficacy
A general definition of synaptic efficacy p, which

Phil. Trans. R. Soc. Lond. B (1993)

takes into account local and non-local effects, and
both levels of organization, is a function of quantities
for the presynaptic neuron in 7 and for the postsynap-
tic neuron in 7y at the neuronal level with a timescale
{T}, X(r,T,), instantaneous local somatic activity,
and Y(ry, Tp), local soma membrane potential; at the
synaptic level with the timescale {T'}, ®@y(s,T), post-
synaptic local membrane potential. Therefore, the
passage from one level of organization (synapses) to
the other (neurons) with ¥ and p as local somatic
depolarization and synaptic efficacy respectively,
implies the measure of the Y- and p-fields in two
different spaces whose points are denoted by (r,T)
and (s,f), respectively (figure 8).

(ii) Local effects at the level of synapses

Local effects at the neuron level include pre- and
postsynaptic biochemical mechanisms, from which the
local synaptic efficacy has to be deduced. Presynaptic
mechanisms are included in the presynaptic efficacy
&(5,,¢ X)) and described following Magleby & Zengel
(1982). Postsynaptic mechanisms are included in the
postsynaptic efficacy #(s,t; (X)). They are described
by a simple two-state kinetic model for describing the
transmitter-receptor binding, and are defined as a
conductivity that is in the number of non-modified
(but modifiable) channels, the number of activated
receptors, and the number of modified channels. By
using the well-known cable equation (Hodgkin &
Huxley 1952):

0Py (s, T)[0T = DoV 2®y(s5,T) — ko®o(s,T), (48)

postsynaptic potential (Psp) changes are described by
two local mechanisms: (i) local free diffusion of ions
represented by the first term, which depends on the
conditions of extracellular space, e.g. extracellular

Figure 8. Two levels of organization in the nervous system:
at the level of neurons (level 2), the field variable is the soma
membrane potential ¥ at point (r,7), and at the level of
synapses (level 1), the field variable is synaptic efficacy u at
(s,t) in the neuron at 7.
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potentials; and (ii) a local spontaneous loss or gain
represented by the second term to describe the
homosynaptic effects. Because of the non-existence of
an interaction operator, the non-symmetry and the
non-locality are not included in this equation.

(iii) Non-local effects at the level of synapses: p-field equation

Non-local effects for a given synapse result from the
influence of electrical phenomena that occur at a
distance. The interaction operator describes this
influence, and is obtained by taking into account non-
local potentials that depend on membrane receptors
and neurotransmitters: the psp of the ry-neuron in s,
which is connected with neurons in 7, results from
other synapses localized in 5" on the same dendritic
tree, due to the activation of neurons in 7’ (figure 9).
As shown in section 4, geometry and topology, which
are included in the model, lead to these heterosynaptic
effects, and are described by two anatomical func-
tions: (1) the density-connectivity 7 (s,r;7) of synapses
defined in a space D,(r,7) at s(r,7) in the ry-neurons
connected with the r-neurons; (ii) the density of
neurons p(r) at r defined in the space Dg(ry) which is
the combination of subspaces D, (r,7,) when r varies. A
potential kernel function U(s,t,s’,t'; @,6@) leads to an
equation for the global non-local synaptic efficacy u
depending on long-term variables:

Ou/0t = DV?u + Hf(u) + T, (49)

The first term corresponds to a local spatial varia-
tion and is directly deduced from equation (48).

The second term expresses the long-term spatio-
temporal summation of all local and non-local effects
that lead from Y (', T") to D(s,t) via @(s't’) (figure 10).
The local dependence of uy on the molecular kinetics
is assumed to be a multiplicative interaction of local
pre- and postsynaptic efficacies & and #. This assump-
tion corresponds to the natural composition of £ and #
considered as mathematical applications: ug(s,t) =
CE(5,6)n(s,8) ). The simplest manner to deduce this
interaction is to suppose that it results from the long-
term variation of chemical substances, neurotransmit-
ters and neuromodulators, the dynamics of which
change on a longer timescale. This long-term change
determines the variation of activated receptors and
thus the variation of long-term pre- and postsynaptic
efficacies assumed to be the time-average of the

n(s’,r';ry)
DR =Dgrr) UDy(’x,)

v@T) D5y

v (reTo)

vy Dy (rrg)

n(sxnry)

Figure 9. Definition of the spaces of units, synapses and
neurons, in nervous tissue. Notations are similar to the ones
presented in figure 3, where /=R, /- 1=s Thus:
Dy(r{") = Dg(rg)and D,_1(#{";(1") = Dy(1,10).
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Figure 10. Non-locality at the level of synapses, expressed as
a composition of applications in the space of units: The
transformation oo(s,f) is the local synaptic efficacy that
transforms soma membrane potential ¥(r,T) into ¢(s,f)
where s = 5(r,rp) is the location of synapses in the neuron at
7o connected with neurons at r. The non-local transforma-
tion ¢ acts from neurons at 7/ on synapses at s via the
synapses at §’, i.e. is the product of g, at §'(r,r;) and the
non-local, hetero-synaptic transformation from s to s.

current synaptic efficacies. These variations are
included in the potential kernel function U, so that
pre- or postsynaptic efficacies act as parameters. The
local dynamics could be obtained from the description
of the molecular kinetics. A particular form, that leads
to Hebbian associative equations of learning, is a
multiplicative interaction of average pre- and postsy-
naptic activities for a simplified description of the
complex internal dynamics:

¢ =alX(r,T))(1), n=>5{X(ro,To))(t). (50)

The third term corresponds to the source and
expresses, e.g. the local dynamics with coefficient m(¢)
inside the synapse:

I, =m(t) u(s,t). (51)

(iv) Non-local effects at the neuron level: Y-field equation

Non-local effects for a given neuron result from the
influence of other neurons of the network that are
localized at a distance. They imply that the neural
activity must be a solution of a field equation at the
level of the network. The mathematical potential
function describes the effect of divergent or convergent
neurons from or to a (ry, 7Tp)-point: postsynaptic soma
depolarization /(ry, Tp) results from the presynaptic
neurons Y(r,T) that are modified according to the
values u(s,t) of synaptic efficacy. The synaptic space
{s(r,t)} is in the neural space {(r,7)}, and this corre-
spondence is expressed by the density-connectivity
function 7 (s,7;79). The source term I'y(ro, 7o), assumed
to be in direct relation with ¥ with a coefficient p(7T),
describes the local generation of a neuron soma
depolarization:

Iy =p(T) Y(r0,To). (52)

(v) Neural field equations
The p-field equation and the -field equation are
deduced from equation (49):
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Op(s,)
ot Dp(ro) Dy(#',r0)
o (10, Tt)
N Dairo) D(r.70)
s = s(rp), Dp(ry) = L/)Ds(flzfo)-

Dg(r9) is the combination of subspaces D,(r,7), i.€. the
space of synapses in neurons that are localized in 7,
and correspond to neurons in 7. 4, B are attenuation
functions of potentials along the membrane between
two points. Equations (53) constitute the neural 2-
level field equations for the activity of neural tissue.
Their coupling is imposed by  and the neural tissue is
characterized by two geometrical functions: the den-
sity of neurons p and the density-connectivity of
synapses . They imply non-linearities that appear via
the source terms. The relation between instantaneous
local somatic activity, in timescale {T}, and soma
depolarization (generally considered as a non-linear
sigmoid function (Kishimoto & Amari 1979)) is
deduced from the solution for the field equations
(53.1) and (53.2) that include local and non-local
effects from multiplicative interaction, from pre- and
postsynaptic efficacy dynamics, and from the space
functions = and A. Learning rules can be either
imposed on the network (Hebb 1949; Kohonen 1978;
Hopfield 1982, 1984) or derived from the dynamics of
the pre- and postsynaptic efficacies.

The physiological interpretation is as follows. The
local effects, which are described by the diffusion
terms (the first term in the field equations (53.1) and
(53.2)), correspond to transport across the ‘external’
medium, i.e. the cytoplasm for synaptic efficacy, and
the extracellular space for soma depolarization. They
are included in the diffusion coefficients D" and D°,
respectively. The non-local effects, due to the hier-
archy of the system, which are described by the
interaction terms (the second term in the field equa-
tions (53.1) and (53.2)), correspond to the propaga-
tion ‘inside’ the medium, i.e. the membrane for

K‘ﬁr(iil) = j‘ Qi—fe(r)ljield(r,t)po(f)df

E(I)

synaptic efficacy, and the neuron for soma depolariza-
tion. What we see in the continuous space at each
level of organization is the combination of these two
types of transport, diffusion and propagation. Thus,
the proposed 2-level field theory gives the value of the
intracellular field potential Ifield(r,t) for given initial
conditions, e.g. stimulation at the presynaptic level.
The extracellular field potential can be derived from
the intracellular one Q;_,, Ifield(r,t) for all elements dr
in the space of neurons, and constitutes the cell
activity contribution.

(vi) Statistical distribution function of the states of the fields
(property 1X)

The second contribution is the statistical ‘activity’
of synapses even when the postsynaptic cell is not
active, and which can be determined by chosing a

Phil. Trans. R. Soc. Lond. B (1993)

= Vr(DrVrlp (70: TO)) + j‘ p(r)!//(r, T) .‘. ,u(s,t)ﬂ(x,r;ro)B(rO, TOJ: T)d'Ydr + Fl//(rOD TO)a

=V(DValst) + [ p(!) [ molsf)m(s i) Alss)dsdr + T(s, 1), - (53.1)

(53.2)

distribution function of synaptic states /() because of
the large number of synapses per cell. As shown in § 5,
the time variation of f(¢) is the sum of: (i) the fraction
Q(t) (equation 38) of synapses that modify their state
under the influence of stimulus intensity; (ii) the
modification (equation 39) of the internal state of the
cell and the corresponding synaptic states, as a
consequence of soma depolarization, e.g. firing (feed-
back from the action potential to the emitting cell);
and (iii) any long-term variation in synaptic efficacy.
Then, from equation (40):

£)- (). (2)-2),

(54)

“The state of a synapse is defined by the field variables

considered in this problem. In the general case, the
previous equation can be re-written:

df = Q1) fHdt + dfy + df,,,

and has a solution that provides the distribution of
postsynaptic potentials, then the average V*¥"(r,t), and
finally the extracellular potential Q,,., V¥ for all
element dr in the space of neurons.

(35)

(vil) Extracellular field potential

For a stimulating intensity /, let £(I) the space of
stimulated neurons that includes a certain number of
activated neurons, depending on the previous deter-
mination. Therefore, the extracellular field potential is
the sum of two contributions:

Ve(tl) = VE(51) + VE"(61),

where:

(56)

vael) = fI)QAyMe(f)V‘y”(f,t)l’o(f)df, (57)
E(

where po is the density of postsynaptic neurons.
Coefficients @, .(r) and @, (r) describe the interac-
tions between the neuron and the extracellular space
(Costalat ¢t al. 1991, 1993). With this model deduced
from the theory, it has been possible to give a
mathematical interpretation of the waveform recorded
in a monosynaptic pathway (figure 11), specifically,
the dentate gyrus in hippocampus (Chauvet & Berger
1990, 1993, submitted). The parameters introduced in
the model to describe the sources of the processes can
be testable, and lead to specific experiments.

(viii) Geometrical re-distribution of neurons (property VIII)

As shown in paper II, the topology of the neural
system changes such that the potential of organization
remains maximum. The dynamics of the system varies
according to equations (53) where the density p is
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Figure 11. Extracellular field potential waveform inter-
preted with the present field theory. The curve is obtained
from numerical simulations of equations (57) for four values
of stimulating intensity (Chauvet & Berger 1990). The
waveform is obtained as the superposition of the synaptic
activity described by the distribution function of the synap-
tic states, and the population spike due to the action
potential of active neurons.

2 (r,q.t%;9,) 7 (5,5t rg)

Figure 12. Notations for a system with four levels in the
nervous tissue. The location of units at each level is: s = ¥,
r=r® ¢g=1® g =1 for synapses, neurons, and groups
of neurons. The density-connectivity between each level is
72 (s,r,tY70) and 72(r,q,t%q0) respectively. Notations are the
same as in figures 3 and 9.

replaced by density-connectivity from one level to
another. The dynamics of densities-connectivities are
given by:

dTrl,l+ l/dtl — RIl[l/IlJrl(r’tl+1)’7Tl,l+1(tl)]ﬂ_l,l+l(tl)- (58)

At least two levels could be considered in the func-
tional organization of the nervous system, a group of
neurons with a specific function, and an assembly of
these groups of neurons, in addition to neurons with
neuronal activity, and synapses with synaptic efficacy.
Since the field equation in this N-level field theory has
the same form at each level, we can introduce an
‘efficacy’ for one neuron and an ‘activity’ for a group
of neurons. Simplified notations are used (figure 12)
to describe units and field variables at each level:
neurons at »=7?  groups of neurons at ¢ =7®,
go = r§®. Therefore, in this neural system with 4 levels,
the field equation at the highest level, deduced from
equations (53), is:

0 (q0,85)
atg Dy(q0)
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where ¥3(q,t%) is the activity of the groups #*® of
neurons. The density is p?(¢), and neuron efficacy at
level 2 is u%(»,t%). The dynamics at the highest level is:

P (9:%00) = f (4:40)5 (60)

since a plausible assumption is a given constant space
function for the density of groups of neurons. Property
VIII thus leads to a law of evolution by selection for
functional interactive groups of units. This was partly
suggested by Edelman (1981) who showed the ability of
competition for the selection of neural groups in the
cerebral cortex. The result obtained here is a mathema-
tical expression of the reciprocal influences between the
topology and the geometry of functional interactions.

7. DISCUSSION: FUNCTIONAL
ORGANIZATION, COMPLEXITY AND
AUTONOMY: A PRINCIPLE OF ORDER
FROM HIERARCHY

The present theory of functional organization offers
some definitions for the terms ‘complexity’ and ‘auto-
nomy’ that are used to specify some ‘obvious’ proper-
ties of biological systems. For example, we may
wonder if amoeba can be considered less autonomous
than mammals in terms of functional interactions.
Many definitions have been given from a mathemati-
cal (Ferdinand 1974; Cornacchio 1977) or biological
(Walter 1980, 1983; Demetrius 1983, 1984) point of
view. This theory constitutes a possible approach to a
description of functional organization.

As shown in paper I, the functional organization is
described by matrix M and graph (G), and the
dynamics of the system by equation (4). In this
equation, I'‘(r,t) represents the local transformations
in structural units at level /. Then I'*is a function of
the excitation field ¥~ at level [ — 1, i.e. a function of
some variables P;~' that are the physiological pro-
ducts at this level. Because of the coupling of dynamics
for each level, although organized and simplified
according to different timescales, the field equation is
more and more complex as the number of levels and
the potential of organization given by equation (27)
increase. But complexity decreases with hierarchical
re-organization of the system, so that the functional
order of the system increases. Mathematically, this
topological property is deduced from the principle of
vital coherence. If geometry is added to the system,
then a phenomenon of re-distribution of units among
groups is obtained. As shown above in nervous system,
such mechanisms are observed during development
and aging.

When structural units are independent, each unit
supports the same dynamical processes, and a physio-
logical collective process between them would not
result. Therefore, a higher level of organization for
such units does not exist. Functional independence
cannot appear in the case of a hierarchical system
built according to definition I of a physiological

= Vq(DqVq)llla(qO:tg) + j‘ P3(4353;40)l//3(4a'53) jl M2(7752)7723(7;q,'52540)3(40,503,9:53)d’dq + Fa(qmt(?)a (59)

Ds(g,90)
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function (see paper I). This result leads to a definition
of an autonomous physiological system versus environ-
ment. Therefore, we can deduce the following pro-
perty: the autonomy of a biological system increases
with the potential of organization in a multiple field
hierarchical system.

It is possible to prove this property as follows. Let P,
be the environmental substance that disappears from
the environment, and is ‘absorbed’ by the system. The
interdependence between the biological system and
the environment is supposed to be represented by this
substance whose concentration is the state variable at
level 1 and is the parameter ¥,, at level 2 in the
dynamical system (12). There are two eventualities for
the functional organization, after an event that stops
the synthesis of P.,.

1. P, was synthesized at this l-level. Although the
eventuality of synthesis of P, is rare, because of the
generally accepted economy principle of living organ-
isms (only the non-degradable elements are taken in
from the environment), the (o-FBs) which satisfies the
optimum principle for the orgatropy function (see
paper II):

dF(v) >0, (61)

can change: (i) with the creation of a new coupling
that leads to an organization (n,) for this product P,
a new positive term is added to the potential of
organization; and (ii) with a re-organization of this 1-
level such that there is an association with a unit that
synthesizes P, = ,,,. Thus the degree of organization
v, and subsequently the potential of organization IT
are increased.

2. P, was not synthesized at any level of organiza-
tion. Then, either the system dies or a new dynamical
process is created. Let N be this new level of
organization. Therefore Y, the vector that contains
Yo, becomes a parameter at level 2:

HNI//N — FN
HAY? = I (ngy"). (62)

Thus the number of levels of organization increases,
and subsequently, the potential of organization 1.

A much more difficult problem is the real origin of
the increase of I1. Is it an increase of autonomy which
implies an increase of IT due to the optimum principle,
or the inverse, i.e. an internal re-organization of the
(o-FBs) after fluctuations near the bifurcation points of
the (p-¥Bs), which implies the evolution of the system
towards a different stable steady-state corresponding
to the synthesis of the vital product? In the latter case,
a new physiological function is created, and an
increase of autonomy is observed. Probably, only
precise knowledge of the functional organization and
the associated dynamics could give an answer to this
question. If we accept that the general functioning of
a biological system is conceived as the dynamics of a
set of functional interactions hierarchically organized,
and described by activator-inhibitor fields at each
level of organization with their own timescale, then
the present theory suggests that the transformations,
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for instance from amoeba to mammals, correspond to
an ‘over-organization’, i.e. an increase of functional
order. Several principles have been postulated to
explain biological organization: e.g. the principle of
order from noise introduced by Von Foerster (1960),
and developed by Yockey (1958) and Atlan (1972) in
the framework of the theory of information, which
describes the increase of information submitted to
random fluctuations. However, this principle, which
can be considered as a functional principle, is not
expressed in terms of physiological functions, because
of its generality. According to the principle of order
from order described by Schrodinger (1944), an
organism ‘feeds upon negative entropy, attracting, as
it were, a stream of negative entropy upon itself, to
compensate the entropy increase it produces by living
and thus to maintain itself on a stationary and fairly
low entropy level’. It is now known that non-
linearities of the system can lead to non-equilibrium
steady states of the dynamics (Prigogine 1972; Nicolis
& Prigogine 1977). Such instabilities from one steady
state to another, far from thermodynamical equilib-
rium, can be caused by small fluctuations. Like the
Schrédinger principle, this principle of order from
fluctuations describes the variation of the physical
structure, i.e. an assembly of chemical structures such
as molecules. In contrast, the principle of functional
order from hierarchy proposed here describes the
natural trend towards time in the decoupling of the
physiological function, and, in that sense, towards a
simplification of the dynamics, i.e. an order of the
system, expressed in terms of the hierarchical func-
tional organization. Specifically, the variation of the
physiological function, conceived as a collective pro-
cess resulting from the combinatorics of functional
interactions, is due to variations of the topology of the
system composed of structural units. This functional
order, based on the concept of the non-symmetry of
functional interactions, is related to the non-locality of
the dynamics, and can be considered as the formalized
expression of some ideas already conceived by physi-
cists as Brillouin (1951): ‘an entire organism is an
organized system, and it is the long distance coupling
which contributes to the value of this organization’.

The author thanks Professor J. D. Murray and Dr R.
Costalat for helpful discussions and revision of the manu-
script, and is very grateful to the Conseil Général de Maine-
et-Loire for having supported this research.
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